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Intro to Fluid Mechanics

Timetable

Week w/b Lecture Seminar
7 31 Oct T1: Navier-Stokes equations T1 lecture
8 7 Nov T2: Boundary layer flows T1
9 14 Nov T2: Boundary layer flows T2
10 21 Nov T3: Lift & drag T2
11 28 Nov T3: Lift & drag T3
12 05 Dec Don Giddings - thermo T3
20 30 Jan T4: Dimensional analysis T4
21 06 Feb T4: Dimensional analysis T4
27 20 Mar T5: Turbomachinery T5
28 27 Mar T5: Turbomachinery T5
33 01 May T6: Compressible flows T6
34 08 May T6: Compressible flows T6
35 15 May Revision
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Resources:
 F. White, Fluid Mechanics

https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44ANOTUK ALMAZ2

190232/730005561

 B. S. Massey, Mechanics of Fluids

https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK ALMA?2

188819970005561

* Module notes (on Moodle)
You will find pdf versions of the books above quite easily just googling them.

4


https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2190232730005561
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The velocity field

Topic 1 can be studied in F. White, Ch. 4

Conservation of mass

Conservation of momentum

Forces acting on a fluid in motion
Representation of the surface stresses
Newtonian fluids

Navier-Stokes equations

Boundary conditions

vV V. V VYV V V VYV V VY

Analytical solutions for N-S equations (seminar)

Learning outcomes: apply the concept of control volume to describe fluid
flow; know how to derive mass/momentum egs; know the constitutive laws of
Newtonian fluids; know how to apply the N-S eqs to simple cases and obtain

analytical solutions. 5
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Fluid mechanics is governed by the N-S egs; if we can solve them, for example using
CFD, we can obtain the fluid flow, e.g. flow generated by a propeller
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CFD simulation done with the open-source package OpenFOAM: https://openfoam.com/ 6

Time: 0.000 s
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Fluid mechanics is governed by the N-S egs; if we can solve them, for example using

CFD, we can obtain the fluid flow, e.g. boiling of a refrigerant on a hot surface

Time: 0.00000 s

CFD simulation done with the open-source package OpenFOAM: hitps://openfoam.com/


https://openfoam.com/
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e | Motivation

Fluid mechanics is governed by the N-S egs; if we can solve them, for example using

CFD, we can obtain the fluid flow, e.g. laminar flow past a cylinder
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Time: 0.00 s

CFD simulation done with the open-source package OpenFOAM: https://openfoam.com/ 8
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Each velocity vector provides an information on the local velocity field:

Vix,y,z,t) =ulx,y,z, )i + v(x,y,z,t)j + w(x,y,z, )k
u(x,y, z, t): velocity component along x
v(x,y, z, t): velocity component along y

w(x,y, z, t): velocity component along z
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But which equations do govern the flow field?
« Conservation of mass (aka continuity equation)
« Conservation of momentum

« Conservation of energy (not treated here)

Conservation of mass: we consider a generic control volume within the flow region,
where the fluid can pass through = the temporatvariation of the mass of fluid
contained in the control volume must be“equal to the net inflow/outflow through its

surface.

10
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Let’s restart from TF1: lecture notes page 77-78, flow in a pipe

[...] if there are several inlet and outlet

streams the equations generalize to: Area A, v Area Az,
Velocity Vi 1 l 2 velocity Vs
dM . ) kg Density p1 Density p2
E = z M;, — z M, ¢ units: ? —1— EI3 —>
<+
dxi l

or:

dM y Mout,z

P Z(pAV)in — Z(pAV)out A

'Y 1 .
1 Min 1 | Moyt n
dy I# I#
Let’'s now consider an infinitesimal control volume, J I 1 :
stationary within the fluid flow. In 2D, this has size - _M_ -
n,2
dV =dx-dy-1. < >y 5
dx x

The - 1 indicates multiplication by the control volume extension along z, taken as 1, and has units
of length. It appears only for the units to be consistent; will be dropped in next slides. 11
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dM . . . . kg
E — Min,l + Min,z - Mout,l - Mout,z unlts'?
Let’s now consider an infinitesimal control volume stationary within the fluid flow.
In 2D, this has size dV = dx - dy - 1. Y, Mour,
Mass within the control volume: M(x,y,t) = p(x,y,t) dx dy (. M:u_ ______ EMout,l
dy| —
Temporal derivative becomes partial: A
P P 7 - Frakalem dx dy tMin,z -{
€ Tx >‘ >x
6(pv)
i * Min1 = pu dy Min2 = pv dx
- = I .
. oM, 1
dy Mout,l Mlnl + am d
pu : 5 (pu) Iy 5(ow)
Y 1- - - Ox = [pu + dx] dy
pv 1 d0x
< > . d(pv
dx | x Mout,z = [pv + (apy ) dy] dx

12
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Y a(pv)

dM . . . . pv + Ay dy
E = Min,l + Min,z - Mout,l - Mout,z 1T T t aaaas
dy pu—i-b —i-»pu+a(pu)dx
] ax
Put everything together. | 1;;""
dx | X

dp d(pu) d(pv)
dedy—M+M—/PK+ Ix dx|dy — +Wdy dx

SN 0p+6(pu) a(pv)]%/ 0

ot
' dp d(pu) d(pv) kg Equation of continuity: it holds
dt * d0x * dy 0| units: m3s at any point in space and time

Special case: incompressible flow

ap ou Jv Equation of continuity
p=cons ot Ox + dy 0 for incompressible flow

13
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Y4 v
Consider the following steady (independent of time) P”*%@
2D velocity field: w| Py - i,
: T
Vix,y) = ulx,y)i+v(x,y)j = 2xy + 3y?)i — y?j tﬂv ‘
dx | X

Is the flow incompressible?

du 5
ax Y
v )
dy Y
Ju OJv . :
> e + 3y =2y—2y=0 Yes, the flow is incompressible!

14
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Let’s restart from TF1: lecture notes pages 99-100, linear momentum equation

Z E = Z Qx,out - z Qx,in + dthx
Z by = Z Qy,out = Z Qyin+ %

In TF2, we now consider the
generic case of unsteady flow

units: N

v

Again, let’'s consider an infinitesimal control
volume of size dV = dx - dy - 1, and focus on

direction Xx. X-momentum in the control volume:

dy| = -—
Qx(x;y; t) = pu dX dy : 1 |

Y

Temporal derivative becomes patrtial:

de an a(pu) < >
_ |
dt ot ot dx dy dx X
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. . d Qx y A Qx,out,z
ZFx=ZQx,out_ZQx,in+F ) — _---*—--—-u.
I Qx,in,l :Qx,out,l
s —
Again, let's consider an infinitesimal control volume of size y ! ____t_____:
dV = dx - dy - 1, and focus on direction x. X-momentum in Quin,2
€ T > ‘;x

the control volume: Q,(x,y,t) = pudx dy

Temporal derivative becomes patrtial:

de an d (,OU) Min,l
dt ot ot dx dy : —
Qxin1 = (pu dy) u = puu dy
vu-%a(pvu) :
y P dy 4 Qx,in2 = (pv dx) u = pvu dx
2——T'-- -—=—=
' l : [ d(puu) |
dy T I» 9 (puw) Qxout1 = |puUu + Ox dx|dy
V(puu __1___ . P 3 d 5 |
. d(pvu) |
(Im])u Qx,out,z = |pvu + (p )dy dx
< >—> _ dy
dx T x

16
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Conservation of momentum

dx

dQ d(pvu)
ZF _Zonut Zme —= N pou ¥ gy @y
' U R D |
d I
Put everything together: yv (p:j.: 1 ?uu X0
o(pw) 3 (puw) a(pvu) e
ey dx dy = ZF -
Repeating the same procedure for direction y:
. T (o)
ZFy=zQy,out_zQy,in+d_ty y pvv + dy dy
| |
¥ o
(pu}v puv +
2(pv) _ 0(puv) a( ) 17
pv puv pvv
< >—>
dx T

11
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Momentum equation so far (still need to figure out the forces):

d(pu) a(puu) a(pvu) dx dy = 2 E,

along x: [ 5 P

d(pv) OJd(puv) J(pvv
along vy: [(515)-'_ (gx)+ ( )d dy = ZF

Can also be rewritten by considering that, for example x-component:

d(pu) Jd(puu) Jd(pvu) ou ap ou d(pu) ou d(pv)
+ + =p prv—+u
dt 0x dy dt dt d0x d0x dy dy

<6u ou au) u) d(pv)
=pl=—Fu—tv—|+u(=—=+
0 dx dy at dx =0, remember continuity!

ongx: |24 ulsv?) axa =) F
along x: _p ot U vay xdy = .

[ (0v dv  dv\
along y: |p T ua+v@ dxdy=ZFy

18



Forces in a fluid in motion

We need now to express the forces: which forces do act on a fluid in motion?

« Body forces, proportional to the mass in the control volume, for instance gravity:

Fyx = Mgy = pgxdx dy ) )
g =9gxlt 9yl

By =Mgy = pgydx dy

- Surface forces F; , and F;,,, which are forces acting along the surfaces of the

control volume and proportional to its surface area.
— Z E, = Fg,x + P:s,x Z Fy = Fg,y + Es,y

How do we write down the overall surface force
for our control volume? Each of the 4 surfaces 3
IS subjected to a normal and a tangential force, 41' |

the figure shows for example the top surface - *‘r - "
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We express the forces as stresses, that are forces per unit area (units: N/m?=Pa)

do
A Oyy + —>2 ——dy do
dy ~ Oyx + a—yxdy
R A Y 00y o;j: surface stress acting on
o | | Oxy t o dx a face normal to the i axis,
dy | €= | and directed along the j axis
LN 00y
| e e L 1 O Ty
Oyx |
Oyy
>
dx | X

[ do ] [ do do do
By = —0pdy — 0yudx + |0py + 22 dx| dy + |0 + %dy] dx = ( xx J’x> dx dy

0x d d0x dy
[ 00,y | [ do do do
xy vy xy vy
F,, = —0yydy — 0y,dx + _axy + P dx_ dy + _ayy + 3y dy] dx = ( Ix + 3y )dx dy

Note: it is not the stresses, but their changes, that cause a net force on the control volume 20
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Therefore:

dlona x- ou ou ou D dy = _ . [ 00y, 00y, ix d
gx. p at+“ax+”ay xdy = x—g‘x+ sx = |P9x T 6x+6y x dy

aongv: o421 vV axday =S E =k o+ Fo = o+ (222 1997\ 4r g
IVe P o " Mox T Vay) T T LY T ey Ty T POy T g Ty )|

where the product dx dy cancels out, leading to a first form of the momentum equation:

p(g—z+ug—2+vg—;>=pgx+ag;x+ag;x YA 0yy+a;;yd\y ayx+%dy
_J—r _____ - Oxy + ag;y dx
v v ov do, do dv | e——"
P<E+ua+v@)=ng+ axy+ a;y ’ oyl i 0>x+%dx
Tyx l
Oyy
Note that: e | >

Oxx» Oyy: Stresses normal to the surface they apply to

Oxy, Oyx: Stresses tangential to the surface they apply to

21
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Our objective is to develop further the expressions for the surface stresses o;;.
The stresses acting on the surface of the control volume are the sum of:

« Hydrostatic pressure: always orthogonal to the surface and directed inward to the

control volume, because it tends to compress it.

* Viscous (shear) stress: due to the motion of the fluid and the velocity gradients in it.

Y op

. p+—dy
Therefore, we can rewrite: 9y \l
1 et :
|
Oxx = P+ Txx 4y " :" = o
I_____ ____1 p+£dx
Oyy = —D T Tyy Tp
. . d -
Oxy = Txy (Just a change of notation) g .
. . Y4 Tyy+aryy y ot
0yx = Ty (Just a change of notation) Wy ety
| o / _ xy+6;xyd
. . e Txx |1 X
where pressure is negative because it is a dy| +— —> ..
Txy ] rxx+idx
. YAE S d
compression force. T | W )
Tyy

b 22
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This takes us to a second form of the momentum equation:

Representation of surface stresses

ot
ou Ou Ou 0p | | 0Ty  OTyy N 1, + =2y ot
—tu—+v—| = + dy Tyx + o dy
’0<6t dx ay) PIx|=19x [T ax T Tay . \‘ RGeS
. I b Ty T o dx
xx |
v v dv d 0t 0t dy [ +— L»
P\a TUuzz+ v ||=|PYGy b F = 2 T I r\ +6Txxdx
d ox dy dy ox dy Yy - e g ™G
T X
Inertial force Gravity Pressure 3 Ifyy w
force  force Tx | >

However, this is not useful yet, because we do not know how to express the viscous

stresses. In order to express them, we need a constitutive relation for the specific

fluid, that tells us how the shear stress depends on the velocity field.

Most of the fluids encountered in the engineering practice (air, water, oil,...) exhibit a

linear dependence between shear stress and shear rate (the velocity gradient).

These fluids are called Newtonian fluids.

23
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Free-streamvelocity, v } Vi
: 5> ‘ Zero velocity From your TF1 notes (p. 64)
A ,3 3 gradient,
= | T v :
d S . Zeror
> 2 ?
2 8 Velocity
@ profile
8]
5
@ v+e S
Q v /i1y
0 Ao
Velocity, v

Maximum velocity
gradient, .- maximum r

Fixed
surface

For most fluids used in engineering it is found that the shear stress t is directly
proportional to the velocity gradient when straight and parallel flow is involved.

Thus: |
dv

or 7 = constant
dy_

The constant of proportionality is called the dynamic viscosity or often just the
viscosity of the fluid and is denoted by p. Hence:

dv

»

T oC

dv
T:ﬁt’d—v

This is Newton’s Law of Viscosity and fluids that obey it are known as Newtonian
fluids. The equation is limited to straight and parallel (laminar) flow. Only if the
flow is of this form does du represent the time rate of sliding of one layer over 24
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For Newtonian fluids, the dynamic viscosity u [kg/(m - s)] is a property of the fluid
and depends only on pressure and temperature.
In the case of a Newtonian fluid in incompressible flow, the constitutive relation takes

the simple form:

_ aui + au]
Tij —H Bx] axl-

So that:
Jdu
Txx = .ua
ov
Tyy = 2”@
Ju 0v A
Txy = U @ + a

23
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There are many interesting examples of non-Newtonian fluids:

Bingham plastic:

7 toothpaste Shear-thickening: cornstarch
A

Newtonian
Shear-thinning vs shear-thicknening

Shear-thinning: lava,
paint, cream, blood

>
du

dy

> »l o) 1:02/300

https://www.youtube.com/watch?v=X cLJvUBIxw

26
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This is where we were left:

ou ou Ju Op 0Ty = 0Ty
p(%“‘&“’@) =PI T o T ox T oy
v v ov op 0Ty, = 0Ty,
p<a+ua+v@) = pgy — 3y + O + dy

And we have seen that for a Newtonian fluid in incompressible flow:

ou ov ou v
Txxzz‘ua’ Tyyzznu@; Txy = Tyx = H @‘l‘a

We are now ready for our third and last version of the momentum equation. For the

incompressible flow of a Newtonian fluid:

ou 6u+ ou\ 6p+ azu+azu
p +u v _pgx ax U axz 2

at 0x dy dy
0v+ 6v+ v\ op N 62v+ 0%v
P \at T %ax T Vay) T P9y T 5y TH\Gx2 T 9y2

21
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We refer to the Navier—Stokes equations as the set of mass and momentum equations

for a Newtonian fluid. In the case of incompressible flow, we have:

» Continuity equation: au+av =0
yed " Ox  dy

» Momentum equation:

0u+ 0u+ ou\ 0p+ 02u+02u

ov 0v+ v\ 0p+ 02v+02v
P\ac T"ax T Vay) T P9y H\oxz T 9y2

dy

They form a system of 3 equations and 3 unknowns: p, u, v. If the flow is compressible,
then the density is also unkwnown, and to close the system we need an equation of

state p = p(p,T), and an energy equation too.

28
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More compact forms of the Navier-Stokes equations for incompressible flow.

We need to refresh some concepts from vector calculus:

: d d
Del operator (in 2D): V=—1i+ —j

dx  Jdy
. ) ) du Jv
Divergence of a vector,e.g.of V=uli+vj: V- V=—+—
dx Jdy
Gradient of a scal fuandv: vu=20+ 25 w=241 %
raaient or a scalar, e.g.oruandv. vu=—I1l+—]J, V=—"—1l1T—
J d0x ay] dx  dy
L aplaci | fuandv: Veu=ot O g, 07V 07V
aplacian a scalar, e.g. o an : u = ) v =
D g. otu v 0x? = 0dy? 0x? 0y?
du Jdv 0
ax 3y ) V-V=0
dJu Odu  du dp d%u  9%u <6u ) )
= - — —+V-Vu|= ——+ uVeu
p<6t+u6x+vay> PYx ax+‘u<ax2+6y2> P ot PYx P U
ov ov  0v op 0%v  0%v ov op ,
p(@t +u6x+v6y) —pgy—@+,u<ﬁ+a—yz> E—) 'D<E+V Vv> pgy—@+,uv %



Boundary conditions

Which boundary conditions do apply to the N-S equations?
du 0Jv

au+ au+ ou\ ap+ 62u+02u
P \ac T%ax T "ay) T PI9x T 5x TH\Gx2 T 52

Inlet: V,p are fl Outlet: V,p are
ow » M
usually known usually known

Solid walls: no-slip condition, V =V, .,
which becomes V = 0 if the wall is stationary

If the flow is unsteady, we need also initial conditions: V,p at t = 0.
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What to take home from Topic 1

» How to apply the concept of control volume to derive conservation equations
» Continuity equation for compressible and incompressible flows

» How to express body and surface forces acting on a fluid in motion

» General form of the momentum equation

» Constitutive law for Newtonian fluids and related momentum equation

» Newtonian fluids and incompressible flow: the Navier-Stokes equations

Further reading:
« F. White book, Sec. 4.1, 4.2, 4.3, 4.6

* F. White book, Sec. 4.9: Euler’s equation and Bernoulli theorem

31
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Seminar

32



) g

University of

e | Analytical solution of the N-S equations

The analytical solution of the N-S equations is available only for a few simplified

flow configurations.

Demonstration of existence and uniqueness of the solution of the Navier-Stokes

equation in 3D is one of the seven Millennium Problems:

Millennium Problems

Yang-Mills and Mass Gap
Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang-Mills equations. But
no proof of this property is known.

Riemann Hypothesis
The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the
average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part 1/2.

P vs NP Problem

If itiseasy to check that a solution to a problem is correct, is it also easy to solve the problem? This is the essence of the P vs NP question. Typical of
the NP problems is that of the Hamiltonian Path Problem: given N cities to visit, how can one do this without visiting a city twice? If you give me a
solution, | can easily check that it is correct. But | cannot so easily find a solution

Navier-Stokes Equation
This is the equation which governs the flow of fluids such as water and air. However, there is no proof for the most basic questions one can ask: do
solutions exist, and are they unique? Why ask for a proof? Because a proof gives not only certitude, but also understanding.

Hodge Conjecture

The answer to this conjecture determines how much of the topology of the solution set of a system of algebraic equations can be defined in terms of
further algebraic equations. The Hodge conjecture is known in certain special cases, e.g., when the solution set has dimension less than four. But in
dimension four it is unknown.

Poincaré Conjecture

In 1904 the French mathematician Henri Poincaré asked if the three dimensional sphere is characterized as the unique simply connected three
manifold. This question, the Poincaré conjecture, was a special case of Thurston's geometrization conjecture. Perelman's proof tells us that every
three manifold is built from a set of standard pieces, each with one of eight well-understood geometries.

Birch and Swinnerton-Dyer Conjecture

Supported by much experimental evidence, this conjecture relates the number of points on an elliptic curve mod p to the rank of the group of
rational points. Elliptic curves, defined by cubic equations in two variables, are fundamental mathematical objects that arise in many areas: Wiles'
proof of the Fermat Conjecture, factorization of numbers into primes, and cryptography, to name three.

http://www.claymath.org/millennium-problems

The Clay Mathematics Institute (CMI) has named seven "Millennium Prize Problems! The Scientific Advisory
Board of CMI (SAB) selected these problems, focusing on important classic questions that have resisted
solution over the years. The Board of Directors of CMI designated a $7 million prize fund for the solutions to
these problems, with $1 million allocated to each. The Directors of CMI, and no other persons or body, have

the authority to authorize payment from this fund or to modify or interpret these stipulations. The Board of
Directors of CMI makes all mathematical decisions for CMI, upon the recommendation of its SAB.

Official problem statement:

(A) Existence and smoothness of Navier—Stokes solutions on ®*. Take v >
0 and n = 3. Let u°(x) be any smooth, divergence-free vector field satisfving (4).
Take f(r.t) to be identically zero. Then there exist smooth functions p(x.t). u;{x.t)
on B* x [0,00) that satisfy (1). (2). (3). (6). (7).

(B) Existence and smoothness of Navier-Stokes solutions in E*/Z*. Take
v >0 and n = 3. Let u°(x) be any smooth, divergence-free vector field satisfying
(8): we take f(x.t) to be identically zero. Then there exist smooth functions p(r. t),
ui(z.t) on B? x [0, o) that satisty (1). (2). (3). (10). (11).

(C) Breakdown of Navier—Stokes solutions on E*. Take v > 0 and n = 3.
Then there exist a smooth. divergence-free vector field u° [x) on B? and a smooth
flx.t) on B x [0,00), satisfying (4), (5}, for which there exist no solutions (p,wu)
of (1). (2). (3). (6). (7) on B* x [0, 00).

(D) Breakdown of Navier—Stokes Solutions on R*/Z%. Take » > 0 and
n = 3. Then there exist a smooth, divergence-free vector field u°(x) on E* and a
smooth f{x. t) on B* x [0, o), satisfying (8). (9). for which there exist no solutions
(p.u) of (1), (2), (3). (10), (11) on B? x [0, oc).
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Inlet:
u/umean
u(y) — umean 75e-02 02 03 04 05 046 07 08 09 1 11 12 13 1.5e+00
| | | \
v(y) =0 _—______ . Wall: u,v =0
|

r/__L ____________________________ — Wall: u,v =0

7.5e-02 02 03 04 05 06 07 08 09 1 1.1 1.2 13 1.5e+00
\

Near the inlet:
« The flow slows down at the wall and

accelerates at the centre

V/Umean

-1.4e-01 -0.1 -0.08 -0.06 -0.04 -0.02 D 0.02 0.04 0.06 0.08 0.1 1.4e-01

« Streamlines are slightly curved

|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
'+ Aboundary layer forms at the wall
1
|
1
|
!+ The vertical speed v K u
1
|
1
|
1
|
1
|
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Steady flow within a 2D channel

Inlet: WU
u(y) = Umean 7.5e-02 0.2 03 04 05 06 Di7 o.‘s o.‘9 T 11 12 13 1.5e+00
v(y) =0 Wall: u,v =20
I
- !
______ I
Wall: u,v =0 Ty o
u/ Umean

7.5e-02 02 03 04 05 06 07 08 09 1 1.1 1.2 13 1.5e+00

V/Umean

-1.4e-01 -0.1 -0.08 -0.06 -0.04 -0.02 D 0.02 0.04 0.06 0.08 0.1 1.4e-01

Far from the inlet:
« The flow does not change anymore
along x. We say that the flow is fully-

developed

it means that the flow is uni-
directional along x

« The vertical speed v is exactly zero

The unidirectional flow far from the

|
|
|
|
|
|
|
|
|
|
|
|
|
|
« Streamlines are perfectly horizontal, |
|
|
|
|
|
|
|
|
|
|
|
|
inlet has analytical solution (will see) |




Consider the incompressible flow of a Newtonian fluid in the following conditions:

« The fluid flows between two stationary, infinitely extended parallel walls

« The flow is at steady-state, thus all time derivatives are zero

« Far from the inlet, the streamlines are horizontal (slide 34) and v = 0 everywhere
« The flow is driven by a constant streamwise pressure gradient dp/dx

« The gravity force is neglected, y=hu=0,v=0

These simplify the N-S equations into: Y
flow
ou %: 0 —_ x ...............
y

a+

0}/+ 0u+ u\ 6p+ azu+02u y=—hiu=0,v=0
P\br ™ “ox ”ay ~ POx T 5y TH\ oxz 0y?
(ZZ‘FUEZ-F UZZ) = pgy (ﬂxz %/2)




What is left? From continuity: y=h.u=0v=0

ou =0= Y
ox | flow
_ i

From the y-momentum equation:

6p_
ay_

0 =|p = p(x) only

y=—hu=0,v=0

X-momentum equation:

d*u dp
K dy? dx

To be solved with boundary conditions: v = 0 for y = +h, —h

Note. The relation T = udu/dy holds as long as the flow is laminar (will see this in T2):

_ PUmean?

Re — ——mean” _ 5400 ¢ = 4h: characteristic length for
Iz flow between parallel plates

Therefore, the solution derived next is correct only for a laminar flow 37




d2u 1dp y=hu=0v=0
dy? ~ pdx 3’[ :
i flow
We integrate twice with respect to y: N X ———————>
1dp y? .
u(y)=;a7+C1y+Cz y=—hu=0,v=0

And obtain the constants by imposing the no-slip condition at the walls:

( —+h)—0=>1dph2+6h+c =0
7 S I dp h?
) (=0, C,=———
Moo R e o 2

u(y = —h) = ﬁ;a;‘ 1h+C; =

dp h* y? y
— ) =g\ |

Parabolic velocity profile

Note: u > 0 because dp/dx < 0, as the pressure
y=—h:u=0,v=0
decreases along the channel due to the wall shear. 38



y=h:u
Max speed at the channel centre (y=0): v
dp h?
Unmax = — 3.5
dx 2u — — —
h
_ : dp 2h3
Volumetric flow rate: V = ju(y)dy == 3
~h X ol y=—h:u=0,v=0
3 :
And, for a channel of length L: Ap = Ve total pressure drop in the channel
h
_ 1 dp h?
Average flow velocity:  Upeqn = -7 f u(y)dy = — x 31 *| Umax = 1.5 Umean
—h Take a look back at the

contours of u/u,y,eqn 1N Slide 34

3 2
We can rewrite: u(y) = Eumean (1 — %)

Note: owing to the 2D geometry, we are neglecting the extension along z and
the volumetric flow rate V is expressed in units of m?/s. 39



Repeat the derivation for a flow in a circular pipe of radius R and diameter D = 2R.
This time we need to use a cylindrical reference frame (r, 9, x). The Navier-Stokes

equations, simplified as done in the previous example, tell us that:

pd( du\ dp
rdr rdr dx

To be now solved with boundary conditions:

u=20, atr =R

au_ 0 tr=20
dr ' ar = ) u=J0 r =R
\‘ T R
The second condition requires that the flow \ flow
— ! . . . -
has axial symmetry. H X _»
1Y
- r =R
u=290



We integrate twice with respect to r:
2

pr
U(T‘) = a@ - Cl Inr + CZ
Axisymmetry condition: du =0= dp T +C 1 =0=C, =
y y © o dr o dx2u  ‘r o B 1=
No-slip condition at the wall: u(r =R) =0 dp R° +C,=0=C dp R”
_ 0= 2 _ _
P W= dx 4u z2 2 dx 4u
— r=R
R
‘ 2 2
| flow _ _dpR°f_ 17
'E‘ _ ) (u(r) = dx 4 <1 R2>
,' Parabolic velocity profile
r=R

L}



University of

o | Worked example 3

dp R? r? . .
u(r) = _PT (1 — —> Also known as ‘Poiseuille’ velocity profile

Poiseuille was the first to derive (1828) the relationship
between pipe length and diameter, flow rate, and

pressure drop, as a model for blood flow in vessels.

Poiseuille’s experimental apparatus,
https://www.annualreviews.org/doi/pdf/10.1146/annurev.fl.25.010193
.000245

Poiseuille’s PhD thesis,
https://ia800208.us.archive.org/22/items/b22291611/b22291611.pdf =

42


https://ia800208.us.archive.org/22/items/b22291611/b22291611.pdf
https://www.annualreviews.org/doi/pdf/10.1146/annurev.fl.25.010193.000245

Max speed at the channel centre (r=0):

u=0 r=R
\“ T R
2 ' flow
dp R "T'é—?'» |
Umax = N, ;Y
‘ u=20 r=R

_54/1

R

: dp mR* . .
Volumetric flow rate: V = J w(r)2mr dr = __p_ Note: the volumetric flow

dx 8u rate V is now in m3/s.
0

suV
And, for a channel of length L. Ap = 75R4 total pressure drop in the channel

. 14 dp R?
Average flow velocity: Umean = 57 = ~ 2xBa J U = 2t
Wall shear stress: 7, = uy| = — 2K
all shear stress: 7, = u—- ==
r=R
87 64 UmeanD
Friction factor: f=———=—,  with Re = PUmean
PUmean Re U
2y, f 16

Skin friction coefficient;: Cr = = = —
/ PUjean 4 Re

43



Worked example 4

Air is flowing vertically between two stationary, infinitely Va

extended parallel plates. The distance between the walls is
. . . . >
h = 0.02 m. Gravity acts vertically downward with magnitude

gy = —9.81 m/s?. The flow is subjected to a constant

streamwise pressure gradient dp/dy. Assuming that the flow h

A
\ 4

Is steady, laminar and fully-developed, and that the geometry

Is 2D, (a) determine the velocity profile of air between the

u,v=20
u,v=20

plates, (b) calculate the necessary streamwise pressure

gradient dp/dy in order to achieve a vertical upward flow rate
of air of V = 0.008 m? /s, and (c) the resulting shear stress at lg
the wall. For air, use p=1 kg/m? and n=0.000018 kg/(m-s).

Explain all the assumptions you make.

Note: owing to the 2D geometry, we neglect the extension along z and the flow rate is expressed in
units of m?/s. 44
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Solution VA

—

A
\ 4

u,v=20
<
T

u,v=20

49
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A SAE 10W oil flows at 1.1 m3/h through

a horizontal pipe with d=2 cm and L=12 m.

Find (a) the average velocity, (b) the Reynolds number, (c) the pressure drop and (d)

the pumping power required. For the oil, use p=870 kg/m3 and n=0.104 kg/(m-s).

Use the theory for laminar flow within a circular pipe seen in WES.

World'’s first beer pipeline:
https://logisticsmgepsupv.wordpress.com/2019/04/10/facilit

ating-transportation-systems-the-worlds-first-beer-pipeline/

T Y -

Y "


https://logisticsmgepsupv.wordpress.com/2019/04/10/facilitating-transportation-systems-the-worlds-first-beer-pipeline/
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From 2020/21 January exam

8. Consider the incompressible two-dimensional flow of a Newtonian fluid in the
following conditions:

e the fluid flows between two horizontal, parallel, infinitely extended walls,

with the bottom wall being stationary and the top wall translating with
speed U, in the positive x direction, see the Figure Q8 below;

¢ the flow is steady-state;

« we are considering a section of the duct far from the inlet, and thus the
streamlines of the flow are horizontal;

¢ the flow is subjected to a constant streamwise pressure gradient dp/dx;
e the gravitational force on the flow is negligible.
Starting with the 2D incompressible Navier-Stokes equations, use the |
information above to produce the theoretical velocity profile in the duct, u(y).

Given the pressure gradient is 5 Pa-m™, the wall velocity is 0.5 m-s, the plate
separation is 10 mm and the viscosity of the fluid is 0.001 kg-m™.s™?, calculate

the velocity aty = 7 mm [4]
U,
S
y
] 1.
u=20 ¥ x

Figure Q8: Sketch of the flow configuration for Q8.

a1
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Solution
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Further reading/assessment:
» F. White book, Sec. 4.10
> F. White book, exercises 4.79, 4.80, 4.81,4.82, 4.83, 4.84, 4.86,4.87, 4.88, 4.89,

4.90, 4.92, 4.93, 4.94, 4.95.



