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Intro to Fluid Mechanics

Teacher – Mirco Magnini, UoN-webpage

Office – Coates B100a

Email – mirco.magnini@nottingham.ac.uk

Office hours – Upon email agreement

https://www.nottingham.ac.uk/research/groups/fluids-and-thermal-engineering/meet-the-team/mirco.magnini
mailto:mirco.magnini@nottingham.ac.uk
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Intro to Fluid Mechanics

Timetable

Week w/b Lecture Seminar

7 31 Oct T1: Navier-Stokes equations T1 lecture

8 7 Nov T2: Boundary layer flows T1

9 14 Nov T2: Boundary layer flows T2

10 21 Nov T3: Lift & drag T2

11 28 Nov T3: Lift & drag T3

12 05 Dec Don Giddings - thermo T3

20 30 Jan T4: Dimensional analysis T4

21 06 Feb T4: Dimensional analysis T4

27 20 Mar T5: Turbomachinery T5

28 27 Mar T5: Turbomachinery T5

33 01 May T6: Compressible flows T6

34 08 May T6: Compressible flows T6

35 15 May Revision
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Resources:

• F. White, Fluid Mechanics

https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2

190232730005561

• B. S. Massey, Mechanics of Fluids

https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2

188819970005561

• Module notes (on Moodle)

You will find pdf versions of the books above quite easily just googling them.

Intro to Fluid Mechanics

https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2190232730005561
https://nusearch.nottingham.ac.uk/permalink/f/1m5tnd/44NOTUK_ALMA2188819970005561
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➢ The velocity field

➢ Conservation of mass

➢ Conservation of momentum

➢ Forces acting on a fluid in motion

➢ Representation of the surface stresses

➢ Newtonian fluids

➢ Navier-Stokes equations

➢ Boundary conditions

➢ Analytical solutions for N-S equations (seminar)

Learning outcomes: apply the concept of control volume to describe fluid

flow; know how to derive mass/momentum eqs; know the constitutive laws of 

Newtonian fluids; know how to apply the N-S eqs to simple cases and obtain

analytical solutions.  

Topic 1 – Navier-Stokes equations

Topic 1 can be studied in F. White, Ch. 4
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Motivation

Fluid mechanics is governed by the N-S eqs; if we can solve them, for example using

CFD, we can obtain the fluid flow, e.g. flow generated by a propeller

CFD simulation done with the open-source package OpenFOAM: https://openfoam.com/

https://openfoam.com/
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Fluid mechanics is governed by the N-S eqs; if we can solve them, for example using

CFD, we can obtain the fluid flow, e.g. boiling of a refrigerant on a hot surface

CFD simulation done with the open-source package OpenFOAM: https://openfoam.com/

Motivation

https://openfoam.com/
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Fluid mechanics is governed by the N-S eqs; if we can solve them, for example using

CFD, we can obtain the fluid flow, e.g. laminar flow past a cylinder

CFD simulation done with the open-source package OpenFOAM: https://openfoam.com/

Motivation

https://openfoam.com/
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Velocity of a fluid

𝑽 𝑥, 𝑦, 𝑧, 𝑡 = 𝑢 𝑥, 𝑦, 𝑧, 𝑡 Ƹ𝒊 + 𝑣 𝑥, 𝑦, 𝑧, 𝑡 Ƹ𝒋 + 𝑤 𝑥, 𝑦, 𝑧, 𝑡 ෡𝒌

𝑥

𝑦

𝑧

Ƹ𝒊

Ƹ𝒋

෡𝒌

Each velocity vector provides an information on the local velocity field:

𝑢 𝑥, 𝑦, 𝑧, 𝑡 : velocity component along x

𝑣 𝑥, 𝑦, 𝑧, 𝑡 : velocity component along y

𝑤 𝑥, 𝑦, 𝑧, 𝑡 : velocity component along z
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Navier-Stokes equations

But which equations do govern the flow field?

• Conservation of mass (aka continuity equation)

• Conservation of momentum

• Conservation of energy (not treated here)

Conservation of mass: we consider a generic control volume within the flow region, 

where the fluid can pass through ⇒ the temporal variation of the mass of fluid 

contained in the control volume must be equal to the net inflow/outflow through its  

surface.
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Conservation of mass

Let’s restart from TF1: lecture notes page 77-78, flow in a pipe

[…] if there are several inlet and outlet

streams the equations generalize to:

or:

𝑑𝑀

𝑑𝑡
=෍ ሶ𝑀𝑖𝑛 −෍ ሶ𝑀𝑜𝑢𝑡

𝑑𝑀

𝑑𝑡
=෍ 𝜌𝐴𝑉 𝑖𝑛 −෍ 𝜌𝐴𝑉 𝑜𝑢𝑡

Let’s now consider an infinitesimal control volume, 

stationary within the fluid flow. In 2D, this has size 

𝑑𝑉 = 𝑑𝑥 ∙ 𝑑𝑦 ∙ 1.

ሶ𝑀𝑖𝑛,1

𝑑𝑥

𝑑𝑦

𝑥

𝑦

ሶ𝑀𝑖𝑛,2

ሶ𝑀𝑜𝑢𝑡,2

ሶ𝑀𝑜𝑢𝑡,1

𝑢𝑛𝑖𝑡𝑠:
𝑘𝑔

𝑠

The ∙ 1 indicates multiplication by the control volume extension along z, taken as 1, and has units 

of length. It appears only for the units to be consistent; will be dropped in next slides.
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Conservation of mass

Let’s now consider an infinitesimal control volume stationary within the fluid flow. 

In 2D, this has size 𝑑𝑉 = 𝑑𝑥 ∙ 𝑑𝑦 ∙ 1.

Mass within the control volume: 𝑀 𝑥, 𝑦, 𝑡 = 𝜌 𝑥, 𝑦, 𝑡 𝑑𝑥 𝑑𝑦

Temporal derivative becomes partial:

𝑑𝑀

𝑑𝑡
= ሶ𝑀𝑖𝑛,1 + ሶ𝑀𝑖𝑛,2 − ሶ𝑀𝑜𝑢𝑡,1 − ሶ𝑀𝑜𝑢𝑡,2

𝑑𝑀

𝑑𝑡
→
𝜕𝑀

𝜕𝑡
=
𝜕𝜌

𝜕𝑡
𝑑𝑥 𝑑𝑦

ሶ𝑀𝑖𝑛,1 = 𝜌𝑢 𝑑𝑦

𝑑𝑥

𝑑𝑦

𝑥

𝑦

𝜌𝑢

𝜌𝑣

𝜌𝑢 +
𝜕 𝜌𝑢

𝜕𝑥
𝑑𝑥

𝜌𝑣 +
𝜕 𝜌𝑣

𝜕𝑦
𝑑𝑦

ሶ𝑀𝑖𝑛,2 = 𝜌𝑣 𝑑𝑥

ሶ𝑀𝑜𝑢𝑡,2 = 𝜌𝑣 +
𝜕 𝜌𝑣

𝜕𝑦
𝑑𝑦 𝑑𝑥

𝑢𝑛𝑖𝑡𝑠:
𝑘𝑔

𝑠

ሶ𝑀𝑜𝑢𝑡,1 = ሶ𝑀𝑖𝑛,1 +
𝜕 ሶ𝑀𝑖𝑛,1

𝜕𝑥
𝑑𝑥

= 𝜌𝑢 +
𝜕 𝜌𝑢

𝜕𝑥
𝑑𝑥 𝑑𝑦



13

Conservation of mass

𝑑𝑀

𝑑𝑡
= ሶ𝑀𝑖𝑛,1 + ሶ𝑀𝑖𝑛,2 − ሶ𝑀𝑜𝑢𝑡,1 − ሶ𝑀𝑜𝑢𝑡,2

Put everything together:

𝜕𝜌

𝜕𝑡
𝑑𝑥 𝑑𝑦 = 𝜌𝑢 𝑑𝑦 + 𝜌𝑣 𝑑𝑥 − 𝜌𝑢 +

𝜕 𝜌𝑢

𝜕𝑥
𝑑𝑥 𝑑𝑦 − 𝜌𝑣 +

𝜕 𝜌𝑣

𝜕𝑦
𝑑𝑦 𝑑𝑥

𝜕𝜌

𝜕𝑡
+
𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
𝑑𝑥 𝑑𝑦 = 0

𝜕𝜌

𝜕𝑡
+
𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
= 0 𝑢𝑛𝑖𝑡𝑠:

𝑘𝑔

𝑚3𝑠

Equation of continuity: it holds 

at any point in space and time

Special case: incompressible flow

𝜌 = 𝑐𝑜𝑛𝑠𝑡 ⇒
𝜕𝜌

𝜕𝑡
= 0

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

Equation of continuity 

for incompressible flow
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Worked example 1

Consider the following steady (independent of time) 

2D velocity field:

Is the flow incompressible?

𝑽 𝑥, 𝑦 = 𝑢 𝑥, 𝑦 Ƹ𝒊 + 𝑣 𝑥, 𝑦 Ƹ𝒋 = 2𝑥𝑦 + 3𝑦2 Ƹ𝒊 − 𝑦2 Ƹ𝒋

𝜕𝑢

𝜕𝑥
= 2𝑦

𝜕𝑣

𝜕𝑦
= −2𝑦

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 2𝑦 − 2𝑦 = 0 Yes, the flow is incompressible!
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Conservation of momentum

Let’s restart from TF1: lecture notes pages 99-100, linear momentum equation

෍𝐹𝑥 =෍ ሶ𝑄𝑥,𝑜𝑢𝑡 −෍ ሶ𝑄𝑥,𝑖𝑛 +
𝑑𝑄𝑥
𝑑𝑡

෍𝐹𝑦 =෍ ሶ𝑄𝑦,𝑜𝑢𝑡 −෍ ሶ𝑄𝑦,𝑖𝑛 +
𝑑𝑄𝑦

𝑑𝑡

ሶ𝑄𝑥,𝑖𝑛,1

𝑑𝑥

𝑑𝑦

𝑥

𝑦

ሶ𝑄𝑥,𝑖𝑛,2

ሶ𝑄𝑥,𝑜𝑢𝑡,2

ሶ𝑄𝑥,𝑜𝑢𝑡,1

Again, let’s consider an infinitesimal control 

volume of size 𝑑𝑉 = 𝑑𝑥 ∙ 𝑑𝑦 ∙ 1, and focus on 

direction x. X-momentum in the control volume:

Temporal derivative becomes partial:

𝑄𝑥 𝑥, 𝑦, 𝑡 = 𝜌𝑢 𝑑𝑥 𝑑𝑦

𝑑𝑄𝑥
𝑑𝑡

→
𝜕𝑄𝑥
𝜕𝑡

=
𝜕 𝜌𝑢

𝜕𝑡
𝑑𝑥 𝑑𝑦

In TF2, we now consider the 

generic case of unsteady flow

𝑢𝑛𝑖𝑡𝑠: 𝑁
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Conservation of momentum

Again, let’s consider an infinitesimal control volume of size 

𝑑𝑉 = 𝑑𝑥 ∙ 𝑑𝑦 ∙ 1, and focus on direction x. X-momentum in 

the control volume:

Temporal derivative becomes partial:

𝑄𝑥 𝑥, 𝑦, 𝑡 = 𝜌𝑢 𝑑𝑥 𝑑𝑦

𝑑𝑄𝑥
𝑑𝑡

→
𝜕𝑄𝑥
𝜕𝑡

=
𝜕 𝜌𝑢

𝜕𝑡
𝑑𝑥 𝑑𝑦

ሶ𝑄𝑥,𝑜𝑢𝑡,1 = 𝜌𝑢𝑢 +
𝜕 𝜌𝑢𝑢

𝜕𝑥
𝑑𝑥 𝑑𝑦

ሶ𝑄𝑥,𝑜𝑢𝑡,2 = 𝜌𝑣𝑢 +
𝜕 𝜌𝑣𝑢

𝜕𝑦
𝑑𝑦 𝑑𝑥

𝑑𝑥

𝑑𝑦

𝑥

𝑦

𝜌𝑢 𝑢

𝜌𝑣 𝑢

𝜌𝑢𝑢 +
𝜕 𝜌𝑢𝑢

𝜕𝑥
𝑑𝑥

𝜌𝑣𝑢 +
𝜕 𝜌𝑣𝑢

𝜕𝑦
𝑑y ሶ𝑄𝑥,𝑖𝑛,2 = 𝜌𝑣 𝑑𝑥 𝑢 = 𝜌𝑣𝑢 𝑑𝑥

ሶ𝑄𝑥,𝑖𝑛,1 = 𝜌𝑢 𝑑𝑦 𝑢 = 𝜌𝑢𝑢 𝑑𝑦

ሶ𝑀𝑖𝑛,1

෍𝐹𝑥 =෍ ሶ𝑄𝑥,𝑜𝑢𝑡 −෍ ሶ𝑄𝑥,𝑖𝑛 +
𝑑𝑄𝑥
𝑑𝑡
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Conservation of momentum

Put everything together:

෍𝐹𝑥 =෍ ሶ𝑄𝑥,𝑜𝑢𝑡 −෍ ሶ𝑄𝑥,𝑖𝑛 +
𝑑𝑄𝑥
𝑑𝑡

𝜕 𝜌𝑢

𝜕𝑡
+
𝜕 𝜌𝑢𝑢

𝜕𝑥
+
𝜕 𝜌𝑣𝑢

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑥

Repeating the same procedure for direction y:

𝑑𝑥

𝑑𝑦

𝑥

𝑦

𝜌𝑢 𝑣

𝜌𝑣 𝑣

𝜌𝑢𝑣 +
𝜕 𝜌𝑢𝑣

𝜕𝑥
𝑑𝑥

𝜌𝑣𝑣 +
𝜕 𝜌𝑣𝑣

𝜕𝑦
𝑑𝑦෍𝐹𝑦 =෍ ሶ𝑄𝑦,𝑜𝑢𝑡 −෍ ሶ𝑄𝑦,𝑖𝑛 +

𝑑𝑄𝑦

𝑑𝑡

𝜕 𝜌𝑣

𝜕𝑡
+
𝜕 𝜌𝑢𝑣

𝜕𝑥
+
𝜕 𝜌𝑣𝑣

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑦
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Conservation of momentum

Momentum equation so far (still need to figure out the forces):

𝑎𝑙𝑜𝑛𝑔 𝑥:
𝜕 𝜌𝑢

𝜕𝑡
+
𝜕 𝜌𝑢𝑢

𝜕𝑥
+
𝜕 𝜌𝑣𝑢

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑥

𝑎𝑙𝑜𝑛𝑔 𝑦:
𝜕 𝜌𝑣

𝜕𝑡
+
𝜕 𝜌𝑢𝑣

𝜕𝑥
+
𝜕 𝜌𝑣𝑣

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑦

Can also be rewritten by considering that, for example x-component:

𝜕 𝜌𝑢

𝜕𝑡
+
𝜕 𝜌𝑢𝑢

𝜕𝑥
+
𝜕 𝜌𝑣𝑢

𝜕𝑦
= 𝜌

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕 𝜌𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
+ 𝑢

𝜕 𝜌𝑣

𝜕𝑦

= 𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑢

𝜕𝜌

𝜕𝑡
+
𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦 =0, remember continuity!

𝑎𝑙𝑜𝑛𝑔 𝑥: 𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑥

𝑎𝑙𝑜𝑛𝑔 𝑦: 𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑦
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Forces in a fluid in motion

We need now to express the forces: which forces do act on a fluid in motion?

• Body forces, proportional to the mass in the control volume, for instance gravity:

• Surface forces 𝐹𝑠,𝑥 and 𝐹𝑠,𝑦, which are forces acting along the surfaces of the 

control volume and proportional to its surface area. 

How do we write down the overall surface force 

for our control volume? Each of the 4 surfaces 

is subjected to a normal and a tangential force, 

the figure shows for example the top surface

𝐹𝑔,𝑥 = 𝑀𝑔𝑥 = 𝜌𝑔𝑥𝑑𝑥 𝑑𝑦
𝒈 = 𝑔𝑥 Ƹ𝒊 + 𝑔𝑦 Ƹ𝒋

𝐹𝑔,𝑦 = 𝑀𝑔𝑦 = 𝜌𝑔𝑦𝑑𝑥 𝑑𝑦

෍𝐹𝑥 = 𝐹𝑔,𝑥 + 𝐹𝑠,𝑥 ෍𝐹𝑦 = 𝐹𝑔,𝑦 + 𝐹𝑠,𝑦

𝐹𝑠,𝑡𝑜𝑝,𝑦

𝐹𝑠,𝑡𝑜𝑝,𝑥
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Representation of surface forces

We express the forces as stresses, that are forces per unit area (units: N/m2=Pa)

𝑑𝑥

𝑑𝑦

𝑦

𝜎𝑦𝑦

𝜎𝑦𝑥

𝜎𝑥𝑥

𝜎𝑥𝑦

𝜎𝑦𝑦 +
𝜕𝜎𝑦𝑦

𝜕𝑦
𝑑𝑦

𝜎𝑦𝑥 +
𝜕𝜎𝑦𝑥

𝜕𝑦
𝑑𝑦

𝜎𝑥𝑥 +
𝜕𝜎𝑥𝑥
𝜕𝑥

𝑑𝑥

𝜎𝑥𝑦 +
𝜕𝜎𝑥𝑦

𝜕𝑥
𝑑𝑥

𝜎𝑖𝑗: surface stress acting on 

a face normal to the 𝑖 axis, 

and directed along the 𝑗 axis

𝐹𝑠,𝑥 = −𝜎𝑥𝑥𝑑𝑦 − 𝜎𝑦𝑥𝑑𝑥 + 𝜎𝑥𝑥 +
𝜕𝜎𝑥𝑥
𝜕𝑥

𝑑𝑥 𝑑𝑦 + 𝜎𝑦𝑥 +
𝜕𝜎𝑦𝑥

𝜕𝑦
𝑑𝑦 𝑑𝑥 =

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑦𝑥

𝜕𝑦
𝑑𝑥 𝑑𝑦

𝐹𝑠,𝑦 = −𝜎𝑥𝑦𝑑𝑦 − 𝜎𝑦𝑦𝑑𝑥 + 𝜎𝑥𝑦 +
𝜕𝜎𝑥𝑦

𝜕𝑥
𝑑𝑥 𝑑𝑦 + 𝜎𝑦𝑦 +

𝜕𝜎𝑦𝑦

𝜕𝑦
𝑑𝑦 𝑑𝑥 =

𝜕𝜎𝑥𝑦

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
𝑑𝑥 𝑑𝑦

Note: it is not the stresses, but their changes, that cause a net force on the control volume

𝑥
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Therefore:

𝑎𝑙𝑜𝑛𝑔 𝑥: 𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑥 = 𝐹𝑔,𝑥 + 𝐹𝑠,𝑥 = 𝜌𝑔𝑥 +

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑦𝑥

𝜕𝑦
𝑑𝑥 𝑑𝑦

𝑎𝑙𝑜𝑛𝑔 𝑦: 𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
𝑑𝑥 𝑑𝑦 =෍𝐹𝑦 = 𝐹𝑔,𝑦 + 𝐹𝑠,𝑦 = 𝜌𝑔𝑦 +

𝜕𝜎𝑥𝑦

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
𝑑𝑥 𝑑𝑦

Representation of surface stresses

where the product 𝑑𝑥 𝑑𝑦 cancels out, leading to a first form of the momentum equation:

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 +

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑦𝑥

𝜕𝑦

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 +

𝜕𝜎𝑥𝑦

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦

𝜎𝑥𝑥, 𝜎𝑦𝑦: stresses normal to the surface they apply to

𝜎𝑥𝑦, 𝜎𝑦𝑥: stresses tangential to the surface they apply to

Note that:
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Our objective is to develop further the expressions for the surface stresses 𝜎𝑖𝑗. 

The stresses acting on the surface of the control volume are the sum of:

• Hydrostatic pressure: always orthogonal to the surface and directed inward to the 

control volume, because it tends to compress it.

• Viscous (shear) stress: due to the motion of the fluid and the velocity gradients in it.

Therefore, we can rewrite:

where pressure is negative because it is a 

compression force.

Representation of surface stresses

𝜎𝑥𝑥 = −𝑝 + 𝜏𝑥𝑥

𝜎𝑦𝑦 = −𝑝 + 𝜏𝑦𝑦

𝜎𝑥𝑦 = 𝜏𝑥𝑦 (just a change of notation)

𝜎𝑦𝑥 = 𝜏𝑦𝑥 (just a change of notation)
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This takes us to a second form of the momentum equation:

Representation of surface stresses

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦

Inertial force Gravity 

force

Pressure 

force

Viscous force

However, this is not useful yet, because we do not know how to express the viscous 

stresses. In order to express them, we need a constitutive relation for the specific 

fluid, that tells us how the shear stress depends on the velocity field. 

Most of the fluids encountered in the engineering practice (air, water, oil,…) exhibit a 

linear dependence between shear stress and shear rate (the velocity gradient). 

These fluids are called Newtonian fluids.
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Newtonian fluids

From your TF1 notes (p. 64)
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Newtonian fluids

For Newtonian fluids, the dynamic viscosity 𝜇 [kg/ 𝑚 ∙ 𝑠 ] is a property of the fluid 

and depends only on pressure and temperature. 

In the case of a Newtonian fluid in incompressible flow, the constitutive relation takes 

the simple form:

So that:

𝜏𝑖𝑗 = 𝜇
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜏𝑥𝑥 = 2𝜇
𝜕𝑢

𝜕𝑥

𝜏𝑦𝑦 = 2𝜇
𝜕𝑣

𝜕𝑦

𝜏𝑥𝑦 = 𝜇
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜏𝑦𝑥 = 𝜇
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜏𝑥𝑦 = 𝜏𝑦𝑥
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Non-Newtonian fluids

There are many interesting examples of non-Newtonian fluids:

𝜏

𝑑𝑢

𝑑𝑦

Newtonian

Shear-thinning: lava, 

paint, cream, blood

Shear-thickening: cornstarch

Bingham plastic: 

toothpaste

https://www.youtube.com/watch?v=X_cLJvUBlxw

Shear-thinning vs shear-thicknening

https://www.youtube.com/watch?v=X_cLJvUBlxw
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Momentum equation for Newtonian fluid

We are now ready for our third and last version of the momentum equation. For the 

incompressible flow of a Newtonian fluid:

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦

𝜏𝑥𝑥 = 2𝜇
𝜕𝑢

𝜕𝑥
, 𝜏𝑦𝑦 = 2𝜇

𝜕𝑣

𝜕𝑦
, 𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2

This is where we were left:

And we have seen that for a Newtonian fluid in incompressible flow:
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The Navier-Stokes equations

We refer to the Navier–Stokes equations as the set of mass and momentum equations 

for a Newtonian fluid. In the case of incompressible flow, we have:

➢ Continuity equation:

➢ Momentum equation: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2

They form a system of 3 equations and 3 unknowns: 𝑝, 𝑢, 𝑣. If the flow is compressible, 

then the density is also unkwnown, and to close the system we need an equation of 

state 𝜌 = 𝜌 𝑝, 𝑇 , and an energy equation too.
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The Navier-Stokes equations

More compact forms of the Navier-Stokes equations for incompressible flow.

We need to refresh some concepts from vector calculus:

∇=
𝜕

𝜕𝑥
Ƹ𝒊 +

𝜕

𝜕𝑦
Ƹ𝒋Del operator (in 2D):

Divergence of a vector, e.g. of 𝑽 = 𝑢 Ƹ𝒊 + 𝑣 Ƹ𝒋: ∇ ∙ 𝑽 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

Gradient of a scalar, e.g. of 𝑢 and 𝑣: ∇𝑢 =
𝜕𝑢

𝜕𝑥
Ƹ𝒊 +

𝜕𝑢

𝜕𝑦
Ƹ𝒋, ∇𝑣 =

𝜕𝑣

𝜕𝑥
Ƹ𝒊 +

𝜕𝑣

𝜕𝑦
Ƹ𝒋

Laplacian a scalar, e.g. of 𝑢 and 𝑣: ∇2𝑢 =
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
, ∇2𝑣 =

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 ∇ ∙ 𝑽 = 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑽 ∙ ∇𝑢 = 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇∇2𝑢𝜌

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑽 ∙ ∇𝑣 = 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇∇2𝑣𝜌

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
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Boundary conditions

Which boundary conditions do apply to the N-S equations?

flow

Solid walls: no-slip condition, 𝑽 = 𝑽𝑤𝑎𝑙𝑙, 
which becomes 𝑽 = 0 if the wall is stationary

Inlet: 𝑽, 𝑝 are 

usually known
Outlet: 𝑽, 𝑝 are 

usually known

If the flow is unsteady, we need also initial conditions: 𝑽, 𝑝 at 𝑡 = 0.

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
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What to take home from Topic 1

➢ How to apply the concept of control volume to derive conservation equations

➢ Continuity equation for compressible and incompressible flows 

➢ How to express body and surface forces acting on a fluid in motion

➢ General form of the momentum equation

➢ Constitutive law for Newtonian fluids and related momentum equation

➢ Newtonian fluids and incompressible flow: the Navier-Stokes equations

Topic 1 – Navier-Stokes equations

Further reading:

• F. White book, Sec. 4.1, 4.2, 4.3, 4.6

• F. White book, Sec. 4.9: Euler’s equation and Bernoulli theorem
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Seminar
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Analytical solution of the N-S equations

The analytical solution of the N-S equations is available only for a few simplified

flow configurations.

Demonstration of existence and uniqueness of the solution of the Navier-Stokes 

equation in 3D is one of the seven Millennium Problems:

http://www.claymath.org/millennium-problems

Official problem statement:

http://www.claymath.org/millennium-problems
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Steady flow within a 2D channel

𝑢/𝑢𝑚𝑒𝑎𝑛
𝑢 𝑦 = 𝑢𝑚𝑒𝑎𝑛

𝑣 𝑦 = 0

Inlet:

𝑢/𝑢𝑚𝑒𝑎𝑛

𝑣/𝑢𝑚𝑒𝑎𝑛

Near the inlet:

• The flow slows down at the wall and 

accelerates at the centre

• A boundary layer forms at the wall

• Streamlines are slightly curved

• The vertical speed 𝑣 ≪ 𝑢

Wall: 𝑢, 𝑣 = 0

Wall: 𝑢, 𝑣 = 0
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Steady flow within a 2D channel

𝑢/𝑢𝑚𝑒𝑎𝑛
𝑢 𝑦 = 𝑢𝑚𝑒𝑎𝑛

𝑣 𝑦 = 0

Inlet:

Wall: 𝑢, 𝑣 = 0

Wall: 𝑢, 𝑣 = 0
𝑢/𝑢𝑚𝑒𝑎𝑛

𝑣/𝑢𝑚𝑒𝑎𝑛

Far from the inlet:

• The flow does not change anymore

along x. We say that the flow is fully-

developed

• Streamlines are perfectly horizontal, 

it means that the flow is uni-

directional along x

• The vertical speed 𝑣 is exactly zero

The unidirectional flow far from the 

inlet has analytical solution (will see)
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Worked example 2

Consider the incompressible flow of a Newtonian fluid in the following conditions:

• The fluid flows between two stationary, infinitely extended parallel walls

• The flow is at steady-state, thus all time derivatives are zero

• Far from the inlet, the streamlines are horizontal (slide 34) and 𝑣 = 0 everywhere

• The flow is driven by a constant streamwise pressure gradient Τ𝜕𝑝 𝜕𝑥

• The gravity force is neglected, 𝒈 = 0

These simplify the N-S equations into:

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜌𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2

flow

𝑦

𝑥

𝑦 = ℎ: 𝑢 = 0, 𝑣 = 0

𝑦 = −ℎ: 𝑢 = 0, 𝑣 = 0
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Worked example 2

What is left? From continuity:

From the y-momentum equation:

X-momentum equation:

flow

𝑦

𝑥

𝑦 = ℎ: 𝑢 = 0, 𝑣 = 0

𝑦 = −ℎ: 𝑢 = 0, 𝑣 = 0

𝜕𝑢

𝜕𝑥
= 0 ⟹ 𝑢 = 𝑢 𝑦 𝑜𝑛𝑙𝑦

𝜕𝑝

𝜕𝑦
= 0 ⟹ 𝑝 = 𝑝 𝑥 𝑜𝑛𝑙𝑦

𝜇
𝑑2𝑢

𝑑𝑦2
=
𝑑𝑝

𝑑𝑥
𝜌𝑢

𝜕𝑢

𝜕𝑥
= −

𝑑𝑝

𝑑𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝑑2𝑢

𝑑𝑦2

To be solved with boundary conditions: 𝑢 = 0 for 𝑦 = +ℎ,−ℎ

Note. The relation 𝜏 = 𝜇 Τ𝑑𝑢 𝑑𝑦 holds as long as the flow is laminar (will see this in T2):

Therefore, the solution derived next is correct only for a laminar flow 

𝑅𝑒 =
𝜌𝑢𝑚𝑒𝑎𝑛ℓ

𝜇
< 2000

ℓ = 4ℎ: characteristic length for 

flow between parallel plates
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𝑑2𝑢

𝑑𝑦2
=
1

𝜇

𝑑𝑝

𝑑𝑥

We integrate twice with respect to y:

𝑢(𝑦) =
1

𝜇

𝑑𝑝

𝑑𝑥

𝑦2

2
+ 𝐶1𝑦 + 𝐶2

And obtain the constants by imposing the no-slip condition at the walls:

𝑢 𝑦 = +ℎ = 0 ⟹
1

𝜇

𝑑𝑝

𝑑𝑥

ℎ2

2
+ 𝐶1ℎ + 𝐶2 = 0

𝑢 𝑦 = −ℎ = 0 ⟹
1

𝜇

𝑑𝑝

𝑑𝑥

ℎ2

2
− 𝐶1ℎ + 𝐶2 = 0

𝐶1 = 0, 𝐶2 = −
𝑑𝑝

𝑑𝑥

ℎ2

2𝜇

𝑢(𝑦) = −
𝑑𝑝

𝑑𝑥

ℎ2

2𝜇
1 −

𝑦2

ℎ2

Parabolic velocity profile

Note: 𝑢 > 0 because Τ𝑑𝑝 𝑑𝑥 < 0, as the pressure 

decreases along the channel due to the wall shear.

𝑦

𝑥

Worked example 2

𝑦 = ℎ: 𝑢 = 0, 𝑣 = 0

𝑦 = −ℎ: 𝑢 = 0, 𝑣 = 0
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Max speed at the channel centre (y=0):

𝑢𝑚𝑎𝑥 = −
𝑑𝑝

𝑑𝑥

ℎ2

2𝜇

Volumetric flow rate: ሶ𝑉 = න

−ℎ

ℎ

𝑢 𝑦 𝑑𝑦 = −
𝑑𝑝

𝑑𝑥

2ℎ3

3𝜇

Average flow velocity: 𝑢𝑚𝑎𝑥 = 1.5 𝑢𝑚𝑒𝑎𝑛

And, for a channel of length L:                          total pressure drop in the channel∆𝑝 =
3𝜇 ሶ𝑉𝐿

2ℎ3

𝑢𝑚𝑒𝑎𝑛 =
1

2ℎ
න

−ℎ

ℎ

𝑢 𝑦 𝑑𝑦 = −
𝑑𝑝

𝑑𝑥

ℎ2

3𝜇

We can rewrite: 𝑢(𝑦) =
3

2
𝑢𝑚𝑒𝑎𝑛 1 −

𝑦2

ℎ2

Worked example 2

Take a look back at the 

contours of 𝑢/𝑢𝑚𝑒𝑎𝑛 in slide 34

Note: owing to the 2D geometry, we are neglecting the extension along z and 

the volumetric flow rate ሶ𝑉 is expressed in units of 𝑚2/𝑠.

𝑦

𝑥

𝑦 = ℎ: 𝑢 = 0, 𝑣 = 0

𝑦 = −ℎ: 𝑢 = 0, 𝑣 = 0
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Worked example 3

Repeat the derivation for a flow in a circular pipe of radius 𝑅 and diameter 𝐷 = 2𝑅. 

This time we need to use a cylindrical reference frame 𝑟, 𝜗, 𝑥 . The Navier-Stokes 

equations, simplified as done in the previous example, tell us that:

To be now solved with boundary conditions:

𝜇

𝑟

𝑑

𝑑𝑟
𝑟
𝑑𝑢

𝑑𝑟
=
𝑑𝑝

𝑑𝑥

flow

𝑟

𝑥

𝑟 = 𝑅

𝑟 = 𝑅

𝑢 = 0

𝜗

𝑅

𝑢 = 0

𝑢 = 0, 𝑎𝑡 𝑟 = 𝑅

𝑑𝑢

𝑑𝑟
= 0, 𝑎𝑡 𝑟 = 0

The second condition requires that the flow 

has axial symmetry.
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Worked example 3

𝑢(𝑟) =
𝑑𝑝

𝑑𝑥

𝑟2

4𝜇
+ 𝐶1 ln 𝑟 + 𝐶2

𝑢(𝑟) = −
𝑑𝑝

𝑑𝑥

𝑅2

4𝜇
1 −

𝑟2

𝑅2

Parabolic velocity profile

Axisymmetry condition: ቤ
𝑑𝑢

𝑑𝑟
𝑟=0

= 0 ⟹
𝑑𝑝

𝑑𝑥

𝑟

2𝜇
+ 𝐶1

1

𝑟
𝑟=0

= 0 ⟹ 𝐶1 = 0

We integrate twice with respect to r:

𝑢 𝑟 = 𝑅 = 0 ⟹
𝑑𝑝

𝑑𝑥

𝑅2

4𝜇
+ 𝐶2 = 0 ⟹ 𝐶2 = −

𝑑𝑝

𝑑𝑥

𝑅2

4𝜇
No-slip condition at the wall: 

flow

𝑟

𝑥

𝑟 = 𝑅

𝑟 = 𝑅

𝑢 = 0

𝜗

𝑅

𝑢 = 0
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Worked example 3

Also known as ‘Poiseuille’ velocity profile

Poiseuille was the first to derive (1828) the relationship

between pipe length and diameter, flow rate, and 

pressure drop, as a model for blood flow in vessels. 

Poiseuille’s PhD thesis, 

https://ia800208.us.archive.org/22/items/b22291611/b22291611.pdf

Poiseuille’s experimental apparatus, 

https://www.annualreviews.org/doi/pdf/10.1146/annurev.fl.25.010193

.000245

𝑢(𝑟) = −
𝑑𝑝

𝑑𝑥

𝑅2

4𝜇
1 −

𝑟2

𝑅2

https://ia800208.us.archive.org/22/items/b22291611/b22291611.pdf
https://www.annualreviews.org/doi/pdf/10.1146/annurev.fl.25.010193.000245
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Worked example 3

Max speed at the channel centre (r=0):

𝑢𝑚𝑎𝑥 = −
𝑑𝑝

𝑑𝑥

𝑅2

4𝜇

Volumetric flow rate: ሶ𝑉 = න

0

𝑅

𝑢 𝑟 2𝜋𝑟 𝑑𝑟 = −
𝑑𝑝

𝑑𝑥

𝜋𝑅4

8𝜇

Average flow velocity: 𝑢𝑚𝑎𝑥 = 2𝑢𝑚𝑒𝑎𝑛

And, for a channel of length L:                           total pressure drop in the channel∆𝑝 =
8𝜇 ሶ𝑉𝐿

𝜋𝑅4

𝑢𝑚𝑒𝑎𝑛 =
ሶ𝑉

𝜋𝑅2
= −

𝑑𝑝

𝑑𝑥

𝑅2

8𝜇

Wall shear stress: 𝜏𝑤 = 𝜇 ቤ
𝑑𝑢

𝑑𝑟
𝑟=𝑅

= −
𝑑𝑝

𝑑𝑥

𝑅

2

Friction factor: 𝑓 =
8𝜏𝑤

𝜌𝑢𝑚𝑒𝑎𝑛
2 =

64

𝑅𝑒
, 𝑤𝑖𝑡ℎ 𝑅𝑒 =

𝜌𝑢𝑚𝑒𝑎𝑛𝐷

𝜇

Skin friction coefficient: 𝐶𝑓 =
2𝜏𝑤

𝜌𝑢𝑚𝑒𝑎𝑛
2 =

𝑓

4
=
16

𝑅𝑒

Note: the volumetric flow 

rate ሶ𝑉 is now in 𝑚3/𝑠.
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Worked example 4

Air is flowing vertically between two stationary, infinitely

extended parallel plates. The distance between the walls is

ℎ = 0.02 𝑚. Gravity acts vertically downward with magnitude 

𝑔𝑦 = −9.81 𝑚/𝑠2. The flow is subjected to a constant 

streamwise pressure gradient Τ𝜕𝑝 𝜕𝑦. Assuming that the flow 

is steady, laminar and fully-developed, and that the geometry

is 2D, (a) determine the velocity profile of air between the 

plates, (b) calculate the necessary streamwise pressure 

gradient Τ𝜕𝑝 𝜕𝑦 in order to achieve a vertical upward flow rate 

of air of ሶ𝑉 = 0.008 𝑚2/𝑠, and (c) the resulting shear stress at 

the wall. For air, use r=1 kg/m3 and m=0.000018 kg/(m∙s). 

Explain all the assumptions you make.

Note: owing to the 2D geometry, we neglect the extension along z and the flow rate is expressed in 

units of 𝑚2/𝑠.

𝑦

𝑥

𝑢
,𝑣

=
0

𝑢
,𝑣

=
0

𝒈

ℎ
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Worked example 4

Solution 𝑦

𝑥

𝑢
,𝑣

=
0

𝑢
,𝑣

=
0

𝒈

ℎ

𝑣

𝑢
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Worked example 4
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Worked example 4
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Worked example 4
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Worked example 5

World’s first beer pipeline:

https://logisticsmgepsupv.wordpress.com/2019/04/10/facilit

ating-transportation-systems-the-worlds-first-beer-pipeline/

A SAE 10W oil flows at 1.1 m3/h through a horizontal pipe with d=2 cm and L=12 m. 

Find (a) the average velocity, (b) the Reynolds number, (c) the pressure drop and (d) 

the pumping power required. For the oil, use r=870 kg/m3 and m=0.104 kg/(m∙s). 

Use the theory for laminar flow within a circular pipe seen in WE3. 

https://logisticsmgepsupv.wordpress.com/2019/04/10/facilitating-transportation-systems-the-worlds-first-beer-pipeline/
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Worked example 5

Solution
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Worked example 6

From 2020/21 January exam
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Worked example 6

Solution
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Further reading/assessment:

➢ F. White book, Sec. 4.10

➢ F. White book, exercises 4.79, 4.80, 4.81,4.82, 4.83, 4.84, 4.86,4.87, 4.88, 4.89, 

4.90, 4.92, 4.93, 4.94, 4.95.

Analytical solution of the N-S equations


